Pour résoudre une équation telle que celle que vous présentez, il faut déjà observer les opérations dont il s'agit.
Dans votre exemple, on a la somme de 2x et 8 dans le premier membre et la somme de 5x et 2 dans le second.
On a donc une égalité entre deux sommes. Or, dans une équation, on ne change pas la solution si on ajoute ou on retranche la même chose dans chaque membre. Dans notre situation, on va retrancher "suffisamment" dans le premier membre pour ne plus avoir de nombres et on va retrancher "suffisamment" dans le second membre pour ne plus avoir de x. Autrement dit, on va retrancher 8 dans les deux membres (cela retirera le 8 du premier membre) puis on va retrancher 5x dans les deux membre (cela retirera le 5x du second membre).
Regardons :
2x+8=5x+2
2x+8-8=5x+2-8
2x=5x-6
2x-5x=5x-6-5x
-3x=-6
Une fois ce tour de passe-passe effectué, il suffit de diviser par (-3) les deux membres (on a le droit aussi) et c'est gagné :
(-3x)/(-3)=-6/(-3)
x=6/3
x=2