Bonjour on a un devoir maison a faire et je ne le comprend pas .Il y a deux exercices que je n'y arrive pas.
Voici l'énoncé:
1) Avec un ordinateur, on calcule le produit de cent dix nombres relatifs (non nuls) dont soixante-dix-sept sont positifs.Quel est le signe du résultat ?
2)Dans un collège, il y a 180 élèves de 4eme, il y a:
9élèves de 13 ans 117élèves de 14 ans 54élèves de 15 ans
Quels sont les pourcentages d'élèves de chaque catégorie?
Détailler les calculs sur la copie.
Merci d'avance Kiara
1) Il faut donc étudier le signe d'une multiplication "géante" de 110 nombres relatifs (par définition certains sont positifs et certains négatifs).
Le résultat de la multiplication de nombres positifs est toujours positif.
En revanche, la multiplication comportant des facteurs négatifs peut donner un résultat positif ou négatif. Par exemple: 5*(-2)*3=-30, (-3)*(-5)=+15.
Intuitivement, on perçoit donc que ce sont uniquement les entiers relatifs négatifs qui vont déterminer le signe final du résultat.
Et vous savez sans le démontrer que le produit de 2 entiers négatifs est positif, le produit de 3 entiers négatifs est négatif,... Faites le test avec -1 et +1:
(-1)*(-1)=+1, (-1)*(-1)*(-1)=-1, (-1)*(-1)*(-1)*(-1)=-1... D'où il ressort que le signe final de la multiplication est corrélé avec le nombre de facteurs négatifs: 2 facteurs négatifs alors le résultat est positif, 3 facteurs négatifs et le résultat est négatif,...
Vous en déduisez la règle: s'il y a un nombre pair de facteurs négatifs, le résultat est positif, et s'il y a un nombre impair de facteurs négatifs, le résultat est négatif.
Vous devez donc déterminer le nombre de facteurs négatifs dans la multiplication effectuée par l'ordinateur (110 facteurs en tout, dont 77 sont positifs,...).
Puis vous en déduirez le signe du résultat de la multiplication.
2) Première remarque:
Ne vous laissez pas perturber par les âges des élèves, certes ce sont des nombres mais ils n'entrent pas en jeu dans les calculs (remplacez-les "dans votre tête" ou sur un brouillon par des noms qui évitent la confusion,comme "Groupe A", "B" et "C"... mais ne les notez pas sur votre copie!)
Deuxième remarque:
Les calculs de pourcentages reposent souvent sur des "règles de trois", que vous nommez peut-être "produit en croix" ou "quatrième proportionnelle"... l'inflation est partout!... ;-)
Alors commençons l'exercice:
9 élèves dans le groupe A
117 élèves dans le groupe B
54 élèves dans le groupe C
180 élèves en tout. Ils constituent donc 100% de l'effectif.
Si 180 élèves représentent 100%
alors 9 élèves représentent 9*100/180=5%
donc 5% d'élèves de 13 ans dans la classe.
Appliquez la même règle aux autres "groupes".
Pour vous assurer que vous n'avez pas fait d'erreur grossière, à la fin de l'exercice, vérifiez que la somme de tous les pourcentages calculés (5+...+...) est bien égale à 100!
Jai un exo que je necomprend pas.. : le quadrilatere abcd est un rectangle et les point a,e et b sontalignes. 1)calculer la longueur de.
2)calculer la longueur eb, puis la longueur ab.
3) le triangle dec est il rectangle en e ?
(Da :2,4cm Ec :4cm Ae :1cm)