E = (a+b)/c + (b+c)/a +(c+a)/b
E = [ab(a+b) + bc(b+c) + ca(c+a)] / abc
on a ab+bc+ca=0
donc ab = -bc-ca , bc=-ab-ca , ca=-ab-bc
d'où on remplace ab par -bc-ca , bc par -ab-ca et ca par -ab-bc
E= [ (-bc-ca) (a+b) + (-ab-ca) (b+c) + (-ab-bc) (c+a) ] / abc
E= [ -bca -b²c-ca²-cab-ab²-abc-cab-c²a-abc-a²b-bc²-bca ] / abc
E = (-6abc - b²c-b²a-ca²-a²b-c²a-bc²) / abc
E= [ - 6abc - b (bc+ba) - a (ac+ab) - c (ca+cb) ] / abc
on a ab+bc+ca=0 , donc bc+ab = -ca , ac+ab = -bc et ca+cb = -ab
E = [ -6abc - b (-ca) - a (-bc) - c (-ab) ] / abc
E= (- 6abc +bca + abc +cab)/abc
E = (-6abc + 3abc) / abc
E = - 3abc/abc = -3